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Arguments are presented to demonstrate that exact equality relations exist
between the critical exponents which characterize the macroscopic conductivity
se and the macroscopic elastic stiffness moduli Ce of percolating systems of any
dimensionality. Using the notation se 3 Dp t, Ce 3 DpT for the critical behavior
of a randomly diluted system slightly above the percolation threshold pc,
(Dp — p − pc > 0) and se 3 |Dp|−s, Ce 3 |Dp|−S for the critical behavior of a
random mixture of normal and perfectly conducting or normal and perfectly
rigid constituents slightly below that threshold, (Dp — p − pc < 0) we show
that T=t+2n and S=s, where n is the percolation correlation length critical
exponent t 3 |Dp|−n (Dp Z 0).

KEY WORDS: Elastic percolation; exact results; critical exponents; composite
media.

1. INTRODUCTION

It was recently shown that, in two-dimensional (2D) percolating networks,
there exist exact equality relations between the critical exponents which
characterize the macroscopic elastic response and those which characterize
the macroscopic electrical conductivity. (1) In a diluted network, where
Dp — p − pc > 0 measures how far the fraction p of occupied bonds or sites
lies above the percolation threshold pc, the macroscopic conductivity se

and any of the macroscopic elastic stiffnesses Ce tend to 0 when Dp Q 0+ as

se 3 Dp t, Ce 3 DpT.



In a network made of normal electric or elastic bonds mixed with perfectly
conducting (superconducting for brevity) or totally rigid bonds, (we will
call such a mixture a ‘‘superelastic’’ network) where Dp — p − pc < 0 mea-
sures how far the fraction p of perfectly rigid or perfectly conducting bonds
or sites lies below its percolation threshold pc, those same macroscopic
moduli tend to . when Dp Q 0− as

se 3 |Dp|−s, Ce 3 |Dp|−S.

In the case of 2D networks, s=t exactly, (2, 3) and the following exact
equalities also hold (1):

T=t+2n, S=s, (1)

where n is the critical exponent which characterizes the divergence of the
percolation correlation length t as Dp Q 0 from either side

t 3 |Dp|−n. (2)

The precise definition I have in mind for t is explained in Section 5.1 later,
where it is used in a derivation.

In this article I argue that the equalities of Eq. (1) hold also for three-
dimensional (3D) percolating networks, and indicate the elements of
similar arguments for percolating networks of any dimensionality d. The
arguments, though not couched in rigorous mathematical language,
actually constitute proofs, but they are conditioned upon various assump-
tions, many of which are unproven though widely believed. Some of the
assumptions involve stability of the universality class of critical behavior of
standard network models under quite drastic alterations. Those assump-
tions need to be verified before the proofs presented here can be considered
conclusive. It is hoped that the informal description of these proofs will
motivate other researchers to look carefully and critically at those assump-
tions in order to determine the validity and reliability of the results which
are being claimed.

In order to show that S=s and T=t+2n, we will demonstrate the
following four inequalities:

S [ s, (3)

T [ t+2n, (4)

S \ s, (5)

T \ t+2n. (6)
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These have been listed in order of increasing difficulty of proof. The first
inequality follows from a discussion based on some classical variational
principles of continuum elasticity and conductivity. (4) The second inequal-
ity was first announced in ref. 5, though the derivation presented there
appears somewhat less than convincing. An actual proof of that inequality
was first given in ref. 6 for 2D networks. The last two inequalities were
demonstrated for 2D systems only very recently. (1) In this article we extend
the proofs of Eqs. (4)–(6) to systems of higher dimensionality. This is done
in full detail for the case d=3, and only in outline for higher values of d.
We also review the proof of the first inequality for general dimensionality.
Because these proofs and the associated discussions are sometimes techni-
cal and intricate, I first give a brief overview of the essential ideas which
underlie those discussions.

All the proofs are based on variational principles, which are intro-
duced and exploited in the subsequent sections. Elastic behavior is
described by mathematical quantities that differ in essential aspects from
those used to describe electrical behavior, e.g., elastic vector displacement
field vs. scalar electric potential field. In spite of this, the variational prin-
ciples are sufficiently similar that it is sometimes possible to use an exact
solution of one problem as trial values for the other problem. This is rela-
tively easy to do in the case of the classical continuum variational prin-
ciples, which are exploited in Section 2 to derive Eq. (3). In order to derive
the other inequalities, Eqs. (4)–(6), it is necessary to base the discussion on
discrete network models, where a different basic set of mathematical quan-
tities are used to characterize the detailed state of the system—bond lengths
and interbond angles for the elastic network vs. site potentials for the elec-
trical network. Here, too, there exist variational principles for the two types
of network problems. Again, a correspondence is found between the dif-
ferent descriptions of those two types of networks, which allows us to use a
solution of one problem as a set of trial values for the other problem.
However, in order to achieve this correspondence, we need to consider a
conducting network that differs in detail from the elastic network, but is
obtained from it by a simple transformation. Moreover, we often need to
modify these networks, sometimes in a quite drastic fashion, in order to
achieve the desired close correspondence. This is especially true when we
tackle the proofs of Eqs. (4)–(6) in dimensionalities greater than 2, where
we need to replace a finite fraction of the ‘‘normal bonds’’ by bonds of the
‘‘third type.’’ This means that, in a diluted network (p > pc), a finite frac-
tion of the present bonds are reset to be perfectly rigid or perfectly con-
ducting, while in a superelastic network (p < pc) a finite fraction of the
normal bonds are deleted. The derivation presented here needs to assume
that these drastic alterations do not change the critical behavior, i.e., that
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the universality class remains unaffected. In addition to this, more drastic
measures are needed in the derivation of Eq. (6), where we use an exact
solution of the electrical network as trial values for the elastic network: The
variational properties of the elastic network involve constraints which must
be satisfied by all trial values of the bond variables, but these constraints
are usually not satisfied by the exact solution of the electrical network. This
difficulty appears already at d=2, and only becomes more serious with
increasing d.

The variational principles, with trial values chosen assiduously, lead
to inequalities between the macroscopic responses of the two types of
network. These inequalities must be applied to a macroscopic continuum
description of the system, in order to obtain inequalities between the
macroscopic or bulk effective elastic moduli and conductivity. That is
achieved by considering sample networks whose size is of the order of the
percolation correlation length t—that is the smallest size which can still
justify invoking a continuum description of the system. The choice of these
macroscopic samples is somewhat different for p > pc and p < pc, and takes
into account some important exact properties of the percolating cluster or
nearly percolating cluster when |p − pc | is very small.

The rest of this article is organized as follows: In Section 2 we review
the classical continuum variational principles and use them to prove Eq. (3)
for systems of arbitrary dimensionality d. In Section 3 we discuss represen-
tations of 3D elastic and electrical networks and establish a correspondence
between these two types of networks. In order to establish such a corre-
spondence, it is necessary to consider the electrical problem on a network
that differs from the elastic network, but is obtained from it in a simple,
well defined manner, and is called the ‘‘covering network.’’ In Section 4 we
apply some network variational principles in order to derive inequalities
between the macroscopic responses of corresponding 3D elastic and elec-
trical networks. This is achieved by using an exact solution of an elastic
problem in order to provide trial values for the electrical problem on the
covering network, which is a quite straightforward matter, and also by
using an exact solution of an electrical problem on the covering network in
order to provide trial values for the elastic problem on the original
network. The latter application of a network variational principle is,
however, far from straightforward, due to constraints which appear in the
elastic problem but are absent from the electrical problem. These con-
straints are dealt with in various ways, including drastic alterations of the
original network models. We present arguments, not proofs, to explain why
we expect that the universality class of critical behavior remains unchanged
despite those alterations. The resulting inequalities are applied, in Section 5,
to macroscopic samples of networks, of size sufficiently large (i.e., at least
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equal to t) that they can be treated as homogeneous samples, in order to
derive Eqs. (4)–(6) for 3D systems. In Section 6 indications are given on
how to extend the derivation of these inequalities to systems of arbitrary d.
Section 7 presents a summary and discussion of the results obtained, and
indicates avenues for further research.

2. THE ‘‘CLASSICAL’’ VARIATIONAL PRINCIPLES

The classical variational principles of continuous media include the
following two, for electrical conductivity and elastic behavior, respectively,

WL

V
=min

f

1 1
V

F
V

dV Nf · ŝ · Nf2 — ONfP · ŝe ·ONfP, (7)

2EL

V
=min

u

1 1
V

F
V

dV Ê · Ĉ · Ê2 — OÊP · Ĉe ·OÊP, Eab —
1
2
1“ua

“rb

+
“ub

“ra

2 . (8)

Here V is the total volume of the system, WL is the total rate of production
of Joule heat, EL is the total elastic potential energy, f(r) is the local elec-
trical potential, u(r) is the local elastic displacement field, ŝ(r) is the local
electrical conductivity, which is usually a second rank tensor quantity, and
Ĉ(r) is the local elastic stiffness, which is always a fourth rank tensor
quantity. In the minimization of the first quadratic functional, f(r) is
allowed to range over all scalar functions of r that have prescribed values
f0(r)=−(E0 · r) at the external boundary, as a consequence of which the
volume averaged electric field is equal to E0 for all of those potential fields
O− NfP=E0. Similarly, in the minimization of the second quadratic func-
tional, u(r) is allowed to range over all vector functions of r that have
prescribed values u0(r)=Ê0 · r at the external boundary, as a consequence
of which the volume averaged strain field is equal to Ê0 for all of those
elastic displacement fields OÊP=Ê0. The functions f(r), u(r) which achieve
those minima are unique, and they describe the physical state of the system
subject to the specified boundary conditions. The minimum values of the
two functionals are the correct physical values of WL/V and 2EL/V, and
they can also serve to define the macroscopic or bulk effective moduli ŝe,
Ĉe of the medium, as done in the above equations. These variational
principles apply to systems of arbitrary integer dimensionality d.

We will assume that the local response is isotropic, therefore
ŝ(r)=s(r) is a position dependent scalar and Ĉ(r) depends on just two
position dependent Lamé coefficients l and m

Cabcw=ldabdcw+m(dacdbw+dawdbc). (9)
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These coefficients satisfy the following relations

Cabab — m > 0, for a ] b,

Caaaa — C11 — l+2m=rv2
s > 0,

o — l+
2
d

m=C11 − 2
d − 1

d
m > 0,

where o is the bulk modulus, m is the shear modulus, C11 is another one of
the elastic stiffness moduli, written in Voigt’s notation, vs is the longitudinal
sound velocity, and r is the mass density of the solid.

Denoting by fa(r) the electrical potential which results when E0=ea,
where ea is the unit vector along ra, we use the trial function u(r)=fa(r) eb

to get

Ê · Ĉ · Ê=(l+2m) 1“fa

“rb

22

+m C
c ] b

1“fa

“rc

22

< (l+2m)(Nfa)2=C11(Nfa)2.

Applying this inequality to the integrand of Eq. (8), we get the following
results for Ê0 and Ĉe

E (0)
ba =E (0)

ab =−
1
2

(1+dab), all the other E (0)
cw =0,

C (e)
abab [

1
V

F
V

dV C11(Nfa)2=s (e)
aa [s(r)],

s(r) — C11(r) — l(r)+2m(r)=o(r)+2
d − 1

d
m(r).

This means that the macroscopic conductivities of a heterogeneous
medium, where the local conductivity s(r) is equal to the local stiffness
coefficient C11(r), provide upper bounds for some of the macroscopic stiff-
ness moduli. In particular, if we are dealing with a composite medium that
has an isotropic microstructure, where ŝe — se is a scalar and Ĉe has the
form of Eq. (9), then

me [ se[s(r)], C (e)
11 =le+2me [ se[s(r)], oe=le+

2
d

me [ se[s(r)].
(10)

Applying the inequalities of Eq. (10) in the case of a rigid/normal
mixture, we immediately obtain Eq. (3). In the case of a percolating
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(diluted) network, these inequalities lead to T \ t, which is a much weaker
lower bound on T than the following inequality, obtained many years
ago (7):

T \ 1+dn. (11)

3. ELASTIC AND ELECTRICAL NETWORKS

In order to try and demonstrate the other inequalities, we need to
consider carefully the elastic potential energy of a network composed of
discrete sites connected by elastic bonds, and compare it with the produc-
tion rate of Joule heat in a corresponding network of electrically conduct-
ing bonds. Since we will seek a correspondence between elastic and electri-
cal properties of percolating networks, we need to implement the elastic
behavior in such a way that the rigidity threshold coincides with the con-
ductivity threshold, which will obviously coincide with the usual geometri-
cal percolation threshold pc. In order to ensure the former coincidence, it is
not enough to endow each bond i with a spring constant ki, and the asso-
ciated bond stretching force kidbi and stretching energy ki(dbi)2/2, where
dbi is the change in length of the bond i. In addition to that force, an
elastic force, and a corresponding potential energy, must also be associated
with changes of some angles between bonds.

For example, in the case of a 2D network, a change djij in the angle
between the nearest neighbor (nn) bonds i and j, which join together
at a network site, should involve an elastic energy mij(djij)2/2 —

mij(dji − djj)2/2. Here mij is the angle-bending force constant and dji, djj

are the changes in the absolute orientations or planar azimuth angles of the
two bonds—see Fig. 1(a). The total elastic energy of such a 2D network is
thus given by (1)

2EL=C
i

ki(dbi)2+ C
(ij)=nn

mij(dji − djj)2. (12)

In a diluted version of such a network, where the force constants are
either finite with uniform positive values ki=k > 0, mij=m > 0, or else
vanish, we also need to specify that mij=m > 0 only if both of the bonds i
and j are present with ki=kj=k > 0. Similarly, in a rigid/normal version
of such a network, where the force constants are either finite with uniform
positive values as above, or else they diverge ki=mij=., we also need to
specify that mij=. only if both of the bonds i and j are perfectly rigid
against stretching, i.e., ki=kj=.. The first requirement ensures that a
diluted elastic network will exhibit solid-state-like macroscopic elastic
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Fig. 1. (a) The angle between the nn planar bonds i and j can be changed by incrementing
their absolute azimuth angles by dji, djj. (b) The 3D orientations of the nnn bonds i and j are
determined by the nn interbond angles hik, hjk, and by the absolute azimuth angles ji(ij),
jj(ij). The latter are defined by projecting the bonds i and j onto the plane perpendicular to
the intervening bond k. (c) Quartet of bonds in a diluted simple-cubic network where the third-
neighbor pair of bonds i and j are separated by the collinear pair of bonds k and l in series.
Even if elastic energy is associated with torsional distortions of nnn bond pairs, the third-
neighbor bonds i and j can be twisted around k and l without any cost in energy. (d) Cubic
unit cell of a 3D diamond network. Sites are denoted by open circles. The cell contains four of
the basic identical tetrads of bonds. All bonds have equal undistorted lengths; all nn bond
pairs subtend the same undistorted angle; there are four basic bond orientations in the undis-
torted network. In the disordered versions of this network, bonds are either randomly deleted,
or else randomly assigned to one of two types—normal or rigid. Additional restrictions, for
the case of a diluted network, are: (i) There are in fact no bond tetrads—there are at most three
bonds attached to any site. (ii) Two such triadic sites must have at least two diadic sites on
any path between them. (iii) All the nnn bonds to a triadic site are of the ‘‘fourth type,’’ i.e.,
different from the three bonds directly attached to that site. These restrictions impose only
short range correlations among the occupation probabilities of different network bonds.
Therefore, even though they will alter pc, they are not expected to affect the critical exponents.
(e) Cluster of elastic bonds (thin solid segments) in a diluted diamond network, along with the
corresponding cluster of the covering network (thin dashed line segments represent the bonds
with infinite electrical conductance, like gjp; thick solid line represents the one bond with finite
conductivity gij). The special direction or z axis lies along the bonds k and s. Thus, these are
the only bonds in this cluster around which the torsional force constants are finite. That is
why mij=gij is finite, but mkl=gkl=mjs=gjs=mjp=gjp=.. If the nn angle-bending force
constants are also set to ., then the azimuthal angle increments of the bonds l and p around
the z-parallel bond s must be equal djl(lp)=djp(lp), therefore we add another perfectly
conducting bond to the covering network glp=., in order to ensure that Vl=Vp too. Elastic
bonds are denoted by thin solid lines, sites of the elastic network are denoted by open circles,
while sites of the covering network are denoted by filled circles. Note that the bonds j, l, p, s
can only move by twisting around the bond k in unison, i.e., as a rigid cluster, thereby chan-
ging their orientation with respect to the bond i, as measured by the difference in azimuthal
angle increments dji(ij) − djj(ij). In the covering network cluster we will have
Vj=Vs=Vp=Vl=Vk, thus only Vi can differ from Vj. ( f ) Two adjacent loops in a 3D diluted
network. Assuming that loop A is closed, the bonds i, j, k, which are oriented along three
independent directions in the undistorted network, can be exploited to ensure that loop B also
closes by an appropriate choice of dbi, dbj, and dbk. The bonds l, p, s can be used, in similar
fashion, to ensure closure of a third loop which includes them.
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Fig. 1. (Continued).

response, with nonzero values for all the macroscopic elastic stiffness
moduli, if and only if it percolates. Similarly, the second requirement
ensures that a rigid/normal elastic network is totally rigid (i.e., all its
macroscopic elastic stiffness moduli are infinite) if and only if the rigid
bonds percolate.

The two types of requirements described above can be summarized
concisely, and also generalized, by saying that, in a two-constituent mixture
of large ki, mij and small ki, mij, the large mij value applies if and only if
both ki and kj are large. In all the other cases, mij will take the small value.

Elastic network models that do not include any angle-bending forces,
also known as ‘‘spring networks’’ or ‘‘central force models,’’ not only have
a rigidity threshold that is higher than pc, but they also apparently have
different values for the critical exponents T and n. (8, 9) Thus, they belong to
a different universality class of percolation. Experiments on real continuum
2D percolating elastic systems, where the basic elastic response is due to the
(macroscopic) elastic properties of each constituent, (this excludes polymer
networks, where the basic elastic properties have an entropic origin) are
consistent with the universality class of 2D networks with angle-bending
forces but inconsistent with the universality class of 2D spring net-
works. (10–13)

In 3D networks, angle-bending forces between nn bonds are not
enough to ensure that the rigidity threshold coincides with the percolation
threshold. Torsional forces are also required in order to achieve that goal.
This means it must cost energy to twist a pair of next-nearest-neighbor
(nnn) bonds around the intervening bond. This is expressed quantitatively
by including two angle-bending terms in the elastic potential energy, one
that depends on the change dhij in the angle between nearest-neighbor
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bonds i and j, and another that depends on the change djij of the
azimuthal angle between next-nearest-neighbor bonds i and j, where that
azimuthal angle is defined by projecting both bonds onto the plane per-
pendicular to the intermediate bond. A crucial property of the latter change
is that it can always be expressed as the difference between the increments
dji(ij), djj(ij) of the absolute azimuth angles of those two bonds djij=
dji(ij) − djj(ij). The notation dji(ij) identifies the type of azimuth angle
associated with the bond i as measuring the orientation of its projection
onto a plane perpendicular to the intermediate bond connecting between i
and its nnn bond j—see Fig. 1(b).

The picture presented above is strictly true only if there is no possi-
bility of having straight, collinear chains of bonds in the system. If such
straight chains can appear, then it is possible to have an unrestricted tor-
sional distortion—see, e.g., the configuration shown in Fig. 1(c), where the
bonds i and j, which are third neighbor bonds, can be twisted around the
intervening collinear bonds k and l without any cost in energy. That is why
we do not consider the simplest type of 3D network, namely a simple cubic
network, or even a body-centered-cubic or face-centered-cubic network.
Instead, we focus our discussion on the case of an elastic network with a
diamond lattice microstructure. That makes sense also because it is the
natural way to generalize a 2D honeycomb network to a 3D system. In
fact, if a diamond network [see Fig. 1(d)] is projected onto a plane per-
pendicular to any one of its bonds, the result is a honeycomb network.
The latter network, because it has the most ‘‘open structure’’ of any 2D
network, i.e., the smallest number of nearest neighbor bonds, involves
fewer constraints when applying the variational principles, and was there-
fore the preferred system for establishing the relations of Eq. (1) in the 2D
case. (1) We then appeal to the universality principle in order to argue that
the critical exponents of other types of percolating networks, or even of
many types of continuum percolating systems, will have the same values as
in the case of the particular type of percolating network considered here. (14)

Because there are four different types of bonds in a diamond network,
[see Fig. 1(d)] there will be four different types of azimuth angles, corre-
sponding to differently oriented families of planes that are orthogonal to
each of the four types of bonds. Each bond will thus have three different
types of azimuth angles associated with it. However, the elastic force and
energy associated with any pair of nnn bonds will depend only on the azi-
muthal angles that refer to a plane perpendicular to the intermediate bond,
which is of course unique.

When the dimensionality of the network increases to values higher
than 3, we need to include yet additional types of angle-bending forces in
order to ensure that the rigidity threshold coincides with pc. This can be
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appreciated by considering the augmentation of an existing d-dimensional
cluster by addition of a single bond at any one of its sites. The orientation
of that bond is defined by d − 1 independent angles. In order for the aug-
mented cluster to exhibit a solid-state-like rigidity, elastic energy must be
associated with changes in any one of those angles. Percolating elastic
networks with d > 3 are briefly discussed in Section 6 later.

In contrast with elastic network models, where a new type of elemen-
tary angle-bending force must be introduced with every increase in the
dimensionality from d to d+1, electrical network models do not need to
change the elementary properties of the conducting bonds when d is
increased. The rate of production of Joule heat in a network of any d can
be expressed as

WL=C
(ij)

gij(Vi − Vj)2, (13)

where Vi is the potential at site i of the network, gij is the electrical con-
ductance of the bond ij, which connects the sites i and j, and the summa-
tion ranges over all those bonds. This expression has the property that it
attains its unique minimum value when these site potentials have their
correct physical values. In seeking this minimum, some of the Vi’s should
have their values fixed, at sites which can be called ‘‘boundary sites.’’ All
the other Vi’s can then be allowed to vary independently over all possible
real values, both positive and negative. This variational property is a simple
consequence of the classical variational principle of Eq. (7).

3.1. One-Dimensional Elastic Chains

An argument presented in ref. 7, to show that the bond stretching
forces are irrelevant for long 1D chains in a 2D network, is extended here
to demonstrate a similar property for the case of 1D chains in a 3D
network.

In a 1D chain of N identical bonds i=1 · · · N, randomly constructed
upon an underlying diamond network, the elastic potential energy EL can
be written as

2EL=k C
N

i=1
(dbi)2+q C

N

i=2
(dhi, i − 1)2+m C

N

i=3
(dji, i − 2)2, (14)

where dbi is the change in length of the bond i, dhi, i − 1 is the change in
angle between that bond and its predecessor, and dji, i − 2 is the change of
azimuth angle of that bond, relative to the change of azimuth angle of the

Exact Relations Between Elastic and Electrical Response 181



bond i − 2, both measured in a plane perpendicular to the intervening bond
i − 1. All the bond parameters which appear in this equation, namely dbi,
dhi, i − 1, dji, i − 2, are independent variables, and they can be used to solve the
elastic problem, where a force F is applied to the two ends of the chain, by
minimizing the quantity EL − F · RN, where RN is the vector separation
between the two ends of the chain. To leading (first) order in the (mutually
independent) bond variables, the change in RN can be written as

dRN= C
N

i=1
bi dbi+ C

N

i=2
dhi, i − 1

1 (bi × bi − 1)
|(bi × bi − 1)|

× RNi
2+ C

N

i=2
dji, i − 2(bi − 1 × RNi),

where bi is a unit vector along the undistorted bond i, b0 is the undistorted
bond length of all the bonds, and RNi — b0 ;N

j=i bj is the vector separation
between the beginning of the bond i and the end of the bond N. Clearly,
RN1=RN and |RNi | is usually of the same order as |RN |. We will denote by
a0 the common value of the undistorted angle between any two nn bonds,
thus |(bi × bi − 1)|=sin a0.

Minimization of EL − F · RN yields the following results for the equi-
librium values of the bond variables:

dbi=
F · bi

k
,

dhi, i − 1=
1

q sin a0
F · [((bi × bi − 1) × RNi)],

dji, i − 2=
1
m

F · (bi − 1 × RNi),

and consequently the following form for the equilibrium value of EL:

2EL=
1
k

C
N

i=1
(F · bi)2+

1
q(sin a0)2 C

N

i=2
(F · [RNi × (bi × bi − 1)])2

+
1
m

C
N

i=3
[F · (RNi − 1 × bi − 1)]2.

As the number of bonds N in the randomly meandering chain increases,
the first sum will increase as N itself, while the second and third sums will
increase faster, as NR2, where R is of order of the end-to-end distance in
the chain |RN |, or more precisely, of its ‘‘radius of gyration,’’ which also
increases as some positive power of N. Consequently, when N is very large,
the elastic energy at equilibrium is predominantly due to the angle-bending

182 Bergman



terms. The bond stretching force constant k becomes ‘‘irrelevant,’’ and the
macroscopic response of the chain is determined by the other force con-
stants q and m. However, it should be noted that, while this is true when q
and m are comparable to kb2

0, it will surely fail if k is small enough so that
kR2 ° q and kR2 ° m. Due to the different dependence on N and R, the
critical aspects of the macroscopic elastic response will then be different
from what they are when kb2

0 is comparable to either q or m. Another fact
worth noting is that, if q and m are vastly different, i.e., if q ° m or
m ° q, then the larger of the two also becomes irrelevant. Nevertheless,
because both of the angle-bending contributions to EL have the same
dependence on N and R, the critical aspects of the 1D chain will be the
same, irrespective of whether q ° m, m ° q, or m % q.

3.2. Three-Dimensional Percolating Elastic Networks

In a random network near pc, the percolating backbone is very
tenuous and includes many long sections that are 1D chains of bonds.
Therefore, even though the critical behavior differs from that of a 1D
chain, we can expect that k will still be irrelevant, and that the relative sizes
of q and m will also be irrelevant. The first of these expectations has been
tested, in the case of 2D networks, by numerical simulations. These simu-
lations showed that the macroscopic elastic moduli of a 2D network at pc

are insensitive to the precise value of k, and depend only on the single angle-
bending force constant in the plane. (15, 16) Similar simulations have not been
made for 3D percolating networks. Nevertheless, we will assume that, near
pc, k is irrelevant. More precisely, we will assume that the network response
is in the same universality class, and that the critical exponents therefore
have the same values, as long as the total bond stretching energy at
equilibrium is less than at least one of the total angle-bending energies at
equilibrium.

The elastic potential energy of the network can be written in the
following form

2EL=C
i

ki(dbi)2+ C
(ij)=nn

qij(dhij)2+ C
(ij)=nnn

mij[dji(ij) − djj(ij)]2. (15)

Here the first term represents the bond stretching energy, with dbi as the
change in length of the bond i, the second term represents the nn angle-
bending energy, with dhij as the change of angle between the nn bonds i
and j, and the third term represents the nnn torsional energy, with dji(ij),
djj(ij) denoting the changes in azimuth angles that the nnn bonds i, j
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subtend in a plane perpendicular to the intermediate bond. Although the
latter term bears some similarity to the angle-bending term in the 2D
expression (12), it must be kept in mind that each bond can now have
more than one type of azimuth angle associated with it, depending on the
orientations of its various nn bonds.

As in the case of 2D networks, we need to specify that, in a two-con-
stituent mixture of small and large values of the force constants, the nn
angle-bending force constant qij takes the large value only if both of the
stretching force constants ki and kj have large values. In addition to that,
we also need to specify that the nnn azimuthal angle-bending constant mij

takes the large value only if all three associated bonds have large stretching
force constants. Thus, not only must ki and kj be large, but also the
stretching constant kl of the bond l that connects between the nnn bond
pair ij. These requirements ensure that the macroscopic elastic stiffness
moduli of the network will be large if and only if the bonds with the large
stretching force constants percolate.

3.3. Electrical Networks Related to Elastic Networks

It is evident that the expression (13) for WL bears some formal
similarity to the last sum in Eq. (15). Nevertheless there are also some
important differences, which hinder the establishment of a close corre-
spondence between the variables Vi and dji(ij): (a) The potentials Vi refer
to sites whereas the azimuth angle increments dji(ij) refer to bonds. (b)
Whereas a conducting site has only one potential Vi associated with it, an
elastic bond in a 3D network usually has more than one type of azimuth
angle associated with it.

The difficulty posed by item (a) is resolved by considering the electrical
problem on a ‘‘covering network’’ of the original elastic network. This
covering network is constructed as follows: Every bond of the original
network is replaced by a site of the covering network; any two sites of the
covering network are connected by a bond if and only if the corresponding
bonds of the original network were next-nearest-neighbors, i.e., if they were
separated by one intermediate bond. This is a variation on the original
concept of ‘‘covering network,’’ where two sites of that network were con-
nected by a bond only if the corresponding bonds of the original network
were nearest-neighbors. (17, 18) Covering networks of the original type were
invoked in the recent discussion of exact relations between elastic and
electrical responses of 2D percolating networks. (1)

Although the covering network differs from the original network, the
two will have identical percolation thresholds: That is so because the exis-
tence/nonexistence of a percolating cluster in the system is a common
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property of the original network and the covering network, irrespective of
whether the microstructure is ordered or disordered. (18) Furthermore, we
can expect that the covering network belongs to the same universality class
of percolation as the original network, since no long range correlations are
introduced by the transformation from one to the other.

The difficulty posed by item (b) is dealt with by a more devious trick:
Recalling that there are four different types of azimuth angles dji(ij), cor-
responding to the four possible orientations of the intermediate bond con-
necting the nnn bonds i and j, we change the torsional force constants mij

for three of those types of torsional distortions either to 0 or to ., if they
were originally set to be finite. The orientation of the fourth bond type will
be chosen as the z axis. The result of this alteration of the force constants is
that there will be no elastic energy associated with torsional distortions of
nnn bond pairs around the other three directions. Therefore the torsional
energy term in Eq. (15) will include only terms with one type of azimuthal
angle increments, which will be denoted simply by dji

C
(ij)=nnn

mij(dji − djj)2.

Obviously, these azimuthal angle increments are measured in the x, y
plane. That is why the above expression has almost the same form as the
angle-bending energy in the case of a 2D network—cf. Eq. (12). The con-
ductances gij of the covering network are now set equal to the correspond-
ing values of mij in the original network, while the finite mij that were
altered to become 0 or . are translated into similarly altered values of gij.

The choice between setting the other mij and gij to 0 or to . depends
on the type of percolation problem we wish to consider: In the case of a
diluted network slightly above the percolation threshold pc, any pair of
sites on a connected cluster, separated by a distance of order t, have a large
number of ‘‘singly connected bonds (SCB)’’ associated with them, in fact,
their number is of order 1/Dp. (19) Those are bonds, connected in series,
such that if any one of them is deleted, the pair of sites become discon-
nected. In this case, replacing a certain fraction of all the (normal) bonds
by totally rigid or perfectly conducting bonds will usually not make
the connection between the two sites totally rigid or superconducting.
Therefore, in this case we choose . for the non-finite value of mij or gij.

By contrast, in the case of a rigid/normal (superelastic) or normal/
perfectly conducting (superconducting) random network, slightly below pc

of the totally rigid or perfectly conducting constituent, we need to choose
0 for the non-finite value of mij or gij: Any pair of unconnected sites,
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(i.e., sites not on the same rigid or perfectly conducting cluster) at a dis-
tance t from each other, have a similarly large number (of order 1/|Dp|) of
‘‘singly disconnecting bonds (SDB)’’ associated with them. (20) These are
normal bonds, situated in parallel, such that if any of them is made rigid
or superconducting, it will place the two sites on the same rigid or super-
conducting cluster. In this case, deleting a certain fraction of all the
normal bonds will usually not sever the normal connection between the two
sites—they will still have a large number of (parallel) SDB’s associated
with them. Therefore, in this case we choose 0 for the non-finite value of
mij of nnn normal bond pairs where the intermediate bond lies in one of the
three ‘‘wrong directions,’’ and also gij=0 for the conductance of the
corresponding covering network bond.

Note that force constants mij that were either 0 or . to begin with are
not changed in the above described procedure. In particular, the ‘‘absent
bonds’’ in a diluted network have zero values for all of the associated force
constants, and those are not changed. Similarly, a rigid bond i in a
superelastic network has ki=., as well as possible infinite values for some
of the associated angle-bending force constants mij, qij, and those are not
changed either. Only finite values of mij can be changed in that procedure.
These caveats are necessary so as not to change the overall properties of
such networks: If we changed a large fraction of the absent nnn bond pairs
in a diluted network near pc to nnn bond pairs with mij=., then the
network would become totally rigid. Similarly, if we changed a large frac-
tion of the totally rigid nnn bond pairs of a nearly percolating superelastic
network to pairs with mij=0, then that network would cease to be nearly
rigid.

As explained above, in order to establish a close correspondence
between the elastic network and the covering electrical network, we set
gij=mij for all the bonds of the latter network. If the finite values of mij

are all identical mij=m, then the covering network will be a three constitu-
ent mixture, where bonds can have either a fixed finite value of the
conductivity gij=m, or gij=0, or gij=..

From the above considerations it is clear that the substitution of 0 or
. for all the finite mij or gij that lie along the three ‘‘wrong’’ bond direc-
tions in the system will not change the rigidity or conductivity threshold
away from the geometrical percolation threshold pc. However, these
changes may make the macroscopic response somewhat anisotropic.
Nevertheless, we will assume that these substitutions do not change the
universality class of the system, and that the various components of Ĉe are
still characterized by the same values of the critical exponents T and S, and
that ŝe is similarly still characterized by the same values of t and s.
In Section 7 later we will argue that it would be sufficient to verify this
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universality property for conducting networks with such substitutions—the
analogous property for elastic networks would then follow from the results
obtained in this article.

4. APPLICATION OF THE NETWORK VARIATIONAL PROPERTIES

4.1. Elastic Solution as Trial Values for Electrical Problem

Because the variational properties of Eq. (13) allow independent and
unrestricted variations of the site potentials Vi, it becomes a straightfor-
ward matter to use the exact solution of the elastic network problem in
order to provide a set of trial values for the electrical problem on the
covering network—we simply set gij=mij and Vi=dji everywhere. In this
way we find

WL [ C
(ij)=nnn

mij(dji − djj)2 [ 2EL. (16)

In Section 5 below, this inequality is applied to specific macroscopic con-
figurations of random networks in order to derive inequalities for the
critical exponents of elastic and electrical percolating networks.

4.2. Electrical Solution as Trial Values for Elastic Problem

In contrast with the brief discussion in the previous subsection, the use
of the exact solution of an electrical problem in order to provide trial
values for the elastic bond variables must overcome certain obstacles:
(a) Although EL achieves its unique minimum value, equal to its physical
value at equilibrium, when dbi, dhij, dji are given their correct physical values,
in seeking that minimum these variables cannot be varied independently.
Thus, any trial values must obey certain constraints. Some of these con-
straints result from the existence of closed loops in the network. These
involve long range correlations, since there are loops of all sizes up to t.
Therefore a straightforward imposition of constraints on the Vi’s of the
covering network, similar to those which are satisfied by the dji’s of the
original network, might possibly change the universality class of the elec-
trical percolation problem. That option should therefore be avoided.
Instead of that, we will attempt to satisfy the loop constraints by a judi-
cious choice of trial values for the dbi’s, which are not determined by the
solution of the electrical problem. Other short range constraints also exist,
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among values of dji and dhij for neighboring interbond angles—those will
be discussed below. These constraints are not automatically satisfied if we
simply try to assign dji=Vi, where Vi is an exact solution of an electrical
problem on the covering network. (b) Even if we somehow managed to
satisfy all the constraints, we would still only have an estimate for the tor-
sional part of the elastic energy, whereas we need an upper bound for the
entire elastic energy.

Since we will only need to apply these trial values in the case of a
diluted network slightly above pc, we now show how to overcome the
above obstacles in that case.

Item (b) is dealt with by first changing to . all the originally finite
(i.e., nonzero) nn angle-bending force constants qij. This will result in a
vanishing contribution to EL from all the nn angle-bending energies, since
all the qij are now either 0 or .. As shown in Section 3.1, this does not
change the macroscopic critical behavior of 1D chains. Due to the large
number of SCB’s in a randomly diluted network that is slightly above pc,
such chains will be abundant in the system. Consequently, the rigidity
threshold will not be changed. We will assume further that the universality
class also remains unaltered when this change has been implemented. As a
result of this, together with the fact that many of the nonzero mij have also
been set to ., there will be many bonds whose azimuth angles dji can only
change in unison: That is true for any pair or triplet of nn bonds none of
which lie along the special direction z. This constitutes another constraint
on the values allowed for the dji’s. In order to ensure that the correspond-
ing site potentials in the covering network also obey these additional
restrictions, we add superconducting bonds gij=. between every such pair
of covering network sites—see Fig. 1(e), where the covering network bond
(dashed line) between the covering network sites (filled circles) l and p is
such a conductor with glp=..

Assuming we have managed to find values for dbi that will satisfy all
of the loop constraints, after making the assignments dji=Vi, we will have
the following upper bound for EL:

2EL [ C
i

ki(dbi)2+ C
(ij)=nnn

mij(dji − djj)2, (17)

C
(ij)=nnn

mij(dji − djj)2=WL. (18)

Since the dbi in this upper bound were chosen so as to satisfy the loop
constraints, without any regard for the cost in energy, this can result in
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a very large value for the sum ;i ki(dbi)2. We therefore now choose a value
k for the bond stretching force constants that will make that sum not
greater than WL. Thus we will have 2EL [ 2WL. This may require a very
small value of ki — k, and we need to worry about whether that may take
the system to a different universality class, as explained in Section 3.1. We
therefore allow both dbi and dji to vary further, subject to all the relevant
constraints, so as to minimize the sum of two sums on the r.h.s. of Eq. (17).
That minimum will be the correct equilibrium value of 2EL. In reaching
that minimum, the second sum on the r.h.s. of that equation will in fact
have increased to a value greater than WL, since the latter value was already
the unconstrained minimum of that sum. Therefore, the first sum on the
r.h.s. of that equation will have decreased, by an even greater amount, to a
value that is less than WL. We will then have

2EL=k C
i

(dbi)2+ C
(ij)=nnn

mij(dji − djj)2 [ 2WL, (19)

k C
i

(dbi)2 [ WL [ C
(ij)=nnn

mij(dji − djj)2. (20)

The first line is the sought after relation between EL and WL. We note that
it is not inconsistent with the previously obtained inequality (16). The
second line is important because it allows us to expect that k is not so small
as to place the system in a different universality class. In fact, we need to
choose the value of k for a system of size t 3 Dp−n for some definite value
of Dp. Then, WL 3 td − 2 − t/n increases with increasing Dp for any dimensio-
nality d, (in particular, for d=3, where we have n 5 0.89 (22) and t 5 2.0, (23)

we get WL 3 t−1.2 3 Dp 1.1) but the value of k ;i (dbi)2 dictated by the con-
straints can only decrease, since the total number of bonds in closed loops
decreases when t decreases from a large value (recall that t is also the total
size of the system). Therefore, a choice of k that makes k ;i (dbi)2 [ WL

for some value of Dp should also suffice for any larger value of Dp.
At this stage we can relax the infinite values assumed for qij, as well as

the infinite values assumed for the mij that were in the ‘‘wrong directions,’’
without spoiling the correspondence established between the elastic and the
electrical networks: If we now let the qij’s and all the ‘‘wrong direction’’
mij’s have finite values, say comparable to the ‘‘right direction’’ mij’s, but
leave the infinite values of gij unchanged in the covering network, then this
can only decrease the equilibrium value of EL, thereby strengthening the
inequality (19). The significance of this step is that it allows us to consider
an elastic network that will exhibit a macroscopic response which is
isotropic.
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We still need to deal with item (a), namely, we need to show that the
assignments dji=Vi involve no inconsistencies, and that values of dbi exist
that will satisfy all of the loop constraints.

We have already limited all the azimuthal angle increments to rota-
tions in the x, y plane, around bonds that are perpendicular to that plane.
Moreover, different bonds attached to such a bond at one of its ends must
all undergo the same azimuth angle increment dji [see Fig. 1(e)]. This
requirement is reflected in a similar requirement that is satisfied by the
corresponding site potentials Vi, as discussed earlier in connection with
item (b) above. Therefore, the assignments dji=Vi can proceed without
encountering any inconsistency. The only remaining problem is that a
closed loop will usually transform into an un-closed loop, and we need
three independent and unused degrees of freedom in order to close it back
again. These can be provided by an appropriate choice of three dbi’s in the
loop, corresponding to bonds along three different directions. In order to
ensure the existence of such bonds, without having to impose any long
range correlations, we introduce the following additional requirements:
(i) Any site has at most three bonds attached to it. Naturally, these bonds
lie along three different directions. Such a site will be called a ‘‘triadic site.’’
(ii) Two triadic sites are separated by at least two non-triadic (i.e., diadic)
sites in series. (iii) The nnn bonds of a triadic site all lie in the ‘‘fourth
direction,’’ i.e., the one that differs from those of the three bonds attached
to the triadic site itself.

These restrictions ensure that any consecutive sequence of three bonds,
where one of the two internal sites is a triadic site, must have different
undistorted orientations that span the entire 3D space, thus these bonds can
be exploited to close a distorted loop—see Fig. 1(f ). The final step of this
argument is to note that the percolating cluster can be constructed by
starting with one of its loops, built around a triadic site (loop A in that
figure), which must include at least one more triadic site, and then adding a
chain at that second triadic site. If that chain evolves into a new loop (loop
B in the same figure), which must have at least three bonds, as well as two
triadic sites and two diadic sites, in common with the original loop, then a
sequence of three bonds (i, j, k in that figure), which includes one of the
common triadic sites as an internal site, can be used to ensure closure of
the new loop.

We note that the additional restrictions (i)–(iii) introduce short range
correlations into the random configurations of occupied bonds in the
diluted network. This will complicate any attempts to simulate such a
network, and will most likely change the value of pc. However, such corre-
lations are not expected to change the universality class of percolation.
Therefore they should not affect the values of any of the critical exponents.
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5. MACROSCOPIC SAMPLES OF PERCOLATING NETWORKS

In order to obtain results for the critical behavior of the macroscopic
moduli, we need to apply the inequalities (16) and (19), obtained in Section 4,
to appropriate boundary value problems on some macroscopic network
samples.

5.1. Diluted Networks

Taking a cue from the case of diluted 2D networks, where we con-
sidered a planar ring shaped sample, (1) we consider for the 3D case a long
circular cylinder, with its axis along the special direction z and its length Lz,
and with a ring shaped cross section—see Fig. 2(a). The boundary at the
outer radius of the sample is held fixed, i.e., all the bonds at that boundary
have their lengths and orientations unchanged. The boundary at the inner
radius of the sample is rigidly rotated around the cylinder axis by an angle
dj0, i.e., all the relevant bonds (those that are not parallel to z) which
intersect that boundary have dji=dj0. This boundary value problem is
solvable in continuum elasticity, when the medium is homogeneous and
isotropic in the x, y plane, which is the case if the inner radius, denoted
by L, is much greater than the percolation correlation length t. If the outer

Fig. 2. (a) Macroscopic sample of a diluted elastic diamond network, shaped as a cylinder
with a circular-ring-shaped cross section, and its axis along the elementary bond direction z,
around which the elementary torsional or azimuthal force constants mij remain finite. Only
some of the network bonds are shown, including two ‘‘spanning clusters.’’ Of the azimuthal
force constants, only those that refer to azimuth angles in the (x, y) ring plane have finite
values. All the other mij of non-absent bonds are infinite. (b) Macroscopic sample of a
rigid/normal elastic diamond network, shaped as a t × t × t cube. Shown are two large rigid
clusters (cross-hatched), attached to opposite edges of the sample, (the flat attachment areas
are shown in black) and separated from each other by, among other things, a large number of
SDB’s in parallel. Those SDB’s are denoted by short thick solid segments.
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radius, denoted by cL, is also much greater than the inner radius, i.e.,
c ± 1, then the total elastic energy per unit length of the cylinder is given
by

EL

Lz
=2pmeL2(dj0)2, (21)

where me — C (e)
xyxy is the macroscopic or bulk effective shear modulus in the

x, y plane. Presumably, all the macroscopic stiffness moduli will exhibit the
same critical behavior.

For the covering network of the above described elastic network, we
apply the boundary condition Vi=0 at all sites on the outer radius of the
ring-shaped cylinder and Vi=dj0 at all sites on the inner radius that cor-
respond to non-z-parallel bonds of the elastic network. This problem is also
easily solvable in continuum conductivity, when the medium is homoge-
neous and isotropic in the x, y plane. The total production rate of Joule
heat per unit length of the cylinder is given by

WL

Lz
=2pse(dj0)2 ln c, (22)

where se is the macroscopic or bulk effective conductivity in the x, y plane.
Again, we presume that all the macroscopic conductivities will exhibit the
same critical behavior.

It is noteworthy that WL is independent of the inner radius of the
system L, while EL 3 L2. It follows that the inequality (16) will be satisfied
in a trivial fashion if L is large enough. In order to get a useful result from
that inequality, we should therefore make L as small as possible. The
smallest value of L for which the homogeneous continuum expressions for
EL and WL are still valid is t 3 Dp−n, the percolation correlation length.
That is so because on length scales much greater than t, the heterogeneity
is averaged out and the system response to uniform external perturbations
is like that of a homogeneous material characterized by the bulk effective
values se, Ce of macroscopic conductivity and macroscopic elastic stiffness.
By contrast, when the system size is smaller than t, the response is not
averaged out, and it fluctuates strongly from sample to sample, depending
on whether a particular sample happens to percolate and on other micro-
structural details. This property of t lies at the basis of the finite size scaling
phenomenon, originally found in a discussion of the 2D Ising model, (24)

and later formulated as a hypothesis for generic second order phase transi-
tions. (25) It has been widely used in the interpretation of simulations of
percolating networks (14–16, 22, 23) and other statistical models. (26, 27) From the
definition of t implied by the description given above, it is obvious that t is
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similar to the average cluster size in systems below the percolation
threshold. Above that threshold t will be similar to the average distance
between adjacent nodes, where a node is a site from which more than 2
independent paths exist that lead to the edges of the system. It is generally
assumed that the critical exponent n of Eq. (2) has the same value above
and below the threshold pc, (14) as found exactly in 2D, where n=4/3, (14, 21)

and numerically in 3D, where n=0.89 ± 0.01. (22) In fact, we only need to
use the value of n above pc, therefore this question is moot.

When we put L=t in the expressions for EL/Lz and WL/Lz, the
results depend only upon Dp, and the inequality (16) leads to

se ln c < 2met
2
S Dp t < DpT − 2n

S T [ t+2n. (23)

Applying the inequality (19) to the same network leads to the opposite
inequality between the critical exponents

T \ t+2n. (24)

Taken together, the two inequalities lead to the exact equality

T=t+2n

for 3D networks.

5.2. Rigid/Normal Networks

In the case of a rigid/normal network, a more convenient boundary
value problem is obtained by considering a macroscopic sample in the
shape of a cube with edge length L—see Fig. 2(b). At the boundaries of the
elastic network, in the limit of homogeneous continuum elasticity, we apply
a linearly varying displacement field u0(r)=Ê0 · r. This ensures that the
volume averaged strain tensor is equal to Ê0, and that the total elastic
energy is given by

EL=1
2 L3Ê0 · Ĉe · Ê0. (25)

In order to find a relation between the boundary conditions of the
continuum problem and the network problem, we recall that, slightly below
the percolation threshold of such a network, there are a large number of
‘‘singly disconnecting bonds (SDB)’’ for any two distant sites of the system:
If two network sites are at a distance t, then the total number of associated
SDB’s is of order 1/|Dp| 3 t1/n ± 1. (20) From this observation there
emerges a simple picture of what a rigid/normal network looks like when it
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is just below the percolation threshold of the rigid constituent and its size
is t × t × t: There are a few very large rigid clusters, which do not form
a system-spanning rigid cluster due to a large number of SDB’s arranged
in parallel—see Fig. 2(b). These SDB’s will carry essentially the entire
boundary displacement u0(r). Thus their lengths will change by an amount
of order |u0 | 3 e0t, where e0 represents the magnitude of the average strain
tensor Ê0. Similarly, their orientations, including azimuth angles, will
change by an amount of order e0t/b0 — dj0, where b0 is the length of an
undistorted bond. Many bonds at the boundary will also have their azi-
muthal orientations changed by an amount of order dj0. The total elastic
energy of such a network is given by

EL 3 t3Ce(e0)2 3 tCeb
2
0(dj0)2, (26)

where the quantity Ce represents a generic macroscopic elastic stiffness
modulus or component of Ĉe.

The corresponding (covering) electrical network of this rigid/normal
elastic network is an electrical superconducting/normal network, just
below the percolation threshold of the superconducting constituent. In
order to correspond to the elastic network problem, we apply a potential Vi

at each boundary site that is equal to the azimuthal angle increment dji of
the corresponding boundary bond. As explained above, many of those will
be of order dj0, hence the total rate of production of Joule heat will be
given by

WL 3 tse(dj0)2, (27)

where se is one of the macroscopic conductivities, all of which should
exhibit similar critical behavior.

Applying the inequality (16) to the expressions (26) and (27) we get

se < Ceb
2
0 S |Dp|−s < |Dp|−S

S S \ s.

Taken together with the previous result S [ s, which was demonstrated in
Section 2, this leads to the exact equality

S=s (28)

for 3D networks.

6. EXTENSION TO NETWORKS OF ARBITRARY DIMENSIONALITY d

In order to extend the proofs presented above to percolating elastic
networks of higher dimensionalities d, we probably need to use a basic
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network structure that is a hyper-diamond lattice. That would be an
ordered network constructed from identical sites, with d+1 bonds attached
to each site in a manner such that the undistorted angle between any pair
of those bonds is the same, and any (d − 1)-member subset of those bonds
spans a different (d − 1)-dimensional subspace. In order to ensure that the
rigidity threshold coincides with pc, we need to have angle-bending forces
between further than nearest-neighbor bond pairs, out to furthest neighbor
bond pairs that are separated by d − 2 intervening bonds in series. None of
those intermediate bonds should be parallel to any of the end bonds, and
they should span a unique (d − 2)-dimensional subspace. This will uniquely
define a family of 2D parallel planes orthogonal to that subspace, which
will not be perpendicular to either of the two end bonds. These two bonds
will therefore have non-vanishing projections onto that family of planes,
and we will be able to define absolute azimuth angles dji(ij), djj(ij) for
those projections. The elastic potential energy will be a sum of d positive
terms: A bond stretching term, plus d − 1 angle-bending terms, involving
angles between bond pairs separated by a successively increasing number of
intermediate bonds in series, from 0 up to d − 2. The term involving the
‘‘furthest neighbor bond (FNB) pairs’’ will have a form similar to the third
term of Eq. (15), namely

C
(ij)=FNB

mij[dji(ij) − djj(ij)]2. (29)

The only differences are that i and j are now an FNB pair instead of an nnn
pair, and that there are many more different types of azimuth angles
dji(ij), depending on an entire chain of bonds between the FNB ’s i and j.

Also, in a two-constituent mixture of large and small values of the
elementary force constants, the large value of any angle-bending constant
will apply if and only if all the relevant bonds have large stretching con-
stants ki. I.e., for a bond pair ij, both ki and kj must be large, as well as all
the kl for at least one continuous chain of d − 2 intermediate bonds.

The electrical problem now needs to be considered on a covering
network where two sites are connected by a bond only if the corresponding
bonds of the original network were FNB ’s.

In order to establish a close correspondence, between the expression
for WL of the covering network and the FNB term in the expression for 2EL

of the original elastic network, we will again have to set many of the mij

force constants, along with the corresponding conductances gij of the
covering network, either to . (in the case of a diluted network near pc) or
to 0 (in the case of a superelastic network near pc), leaving finite values
only for those mij which refer to azimuth angles in one family of parallel
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2D planes. In order to obtain the analogues of Eqs. (19) and (20), we will
have to set all the other angle-bending force constants to . in the case of a
diluted network, and we will have to introduce additional covering network
bonds with infinite conductance between nearby covering network sites
whose potentials need to be equal in order to satisfy certain elastic network
constraints. Some short range correlations will have to be imposed on the
occupation of bonds in the randomly diluted elastic network, in order to
ensure the consistency of the assignments dji=Vi and the possibility of
closing all the distorted loops by an appropriate choice of the dbi’s. I have
not worked out the precise nature of these short range correlations, since
that requires taking account of the detailed microstructure of the hyper-
diamond networks upon which the discussion is presently based.

From the above discussion, it will follow that the equalities (1) should
hold for percolating networks of any dimensionality d. This conclusion is
based on assumptions regarding universality classes of percolation which
are widely believed but unproven, as in the case d=3.

7. SUMMARY AND DISCUSSION

Relations between the macroscopic critical behaviors of percolating
elastic networks with angle-bending forces and percolating electrical net-
works were discussed in the case where the dimensionality is 3 or greater.
Diluted networks as well as superelastic networks were considered. Using
exact variational principles, arguments were presented to show that
T=t+2n and S=s. Those arguments involved consideration of special
types of random networks, with specific ‘‘open’’ microstructures and short
range correlations, as well as reassignments of extreme values (0 or .) to
some of the originally finite force constants or conductances of elementary
network bonds. Therefore the validity of those arguments hinges upon
certain universality properties of percolating systems. Though widely
believed, those properties have not been examined in a critical fashion for
the percolation process, and therefore they remain unproven. In particular,
replacement of a finite fraction of finite force constants mij or finite con-
ductances gij by . or 0, in diluted networks or in superelastic networks
respectively, needs to be studied in order to verify the assumption that such
replacements do not change the universality class. Because of this, the
proofs presented here are conditional upon verification of these assump-
tions. Nevertheless, I am confident that the conclusions reached are valid.
If they fail because any of the universality assumptions that were made
turns out to be wrong, then that breakdown of universality would become
an interesting discovery in its own right. I hope that the results presented

196 Bergman



here will motivate other researchers to try and prove or disprove some of
those assumptions.

I note that Eq. (1) was obtained independently of whether those uni-
versality assumptions are valid. Those assumptions are crucial only as
regards the actual values attained by the critical exponents t, s, T, S. I.e.,
only if those universality assumptions are valid, will it follow that the rela-
tions of Eq. (1) also hold for the properties of the unaltered elastic and
electrical networks, which can serve as models for real, two-constituent,
continuum percolating composites. It would be sufficient to check those
universality assumptions using appropriately altered three constituent
conducting networks with normal, perfectly insulating, and perfectly con-
ducting bonds, without having to also check those assumptions on elastic
networks. Obviously, such a study would be much easier to perform on
conducting networks than on the analogous elastic networks. The only
assumptions that need to be tested specifically by simulations of elastic
networks are the ones having to do with the irrelevance of k and of the
ratio q/m when that ratio tends to . or to 0. I also hope that researchers
with a better understanding of the microstructural details of hyper-
diamond networks will try to fill in the gaps in the outlined arguments for
d > 3.

It should also be noted that the arguments and proofs presented here
do not rely on the fact that the fractal percolating cluster is produced by a
random assignment of the network bonds to two different classes. There-
fore they should also be applicable to other fractal systems, such as the one
discussed in ref. 28, which is based on the fractals known as Koch curves.
They might also be applicable to percolating systems that lie in different
universality classes. A relevant example is provided by the so-called ‘‘Swiss
cheese’’ models, discussed in ref. 29. Although these models were intro-
duced in the context of continuum percolation, they can always be
mimicked using networks with a specially contrived distribution of bond
conductances or elastic force constants.

Simulations have not been performed for any elastic system with
d > 2. This is due not only to the difficulty of carrying out such simula-
tions, but also to the fact that some upper (5) and lower (7) bounds for T,
known for many years, appeared to be so close to each other, e.g.,

1+dn 5 3.67 [ T [ t+2n 5 3.78 for d=3. (30)

Such simulations would clearly be valuable in verifying the assumptions
made regarding the irrelevance of k and of q (or m) when kb2

0 ’ q ° m (or
kb2

0 ’ m ° q) in 3D diluted elastic networks.
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I am aware of only two experiments performed on 3D continuum
percolating elastic systems:

(a) Using a set of solid beams, made by sintering a powder of submicron
grains of metallic Silver, both the electrical conductivity and Young’s
modulus were measured over a range of volume fractions approaching
the rigidity threshold from above. (30) The results were T=3.8 ± 0.5, t=
2.15 ± 0.25. Using n=0.89 ± 0.01, (22) these results are of course consistent
with the equality T=t+2n. It is also clear that, due to the error bars, the
results are considerably less tight than the theoretical bounds of Eq. (30).

(b) Using samples of a Silicon-based gel mixed with small particles of
metallic Aluminum, both the dielectric constant and Young’s modulus were
measured over a range of volume fractions approaching the rigidity
threshold from below. (31) By plotting Young’s modulus vs. the dielectric
constant, the need to measure volume fractions precisely was avoided. As a
result of this, the ratio S/s could be obtained directly, without having to
measure S and s separately. The result found was S/s=0.80 ± 0.05, which
differs from the conclusion of the present study that this ratio should be 1.
At present I can offer no explanation for this discrepancy. I hope that
other researchers will now be motivated to perform similar experiments,
and thus shed more light on this discrepancy.
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